EE103 Final Examination

Dec. 12, 2017 4:00-7:00 p.m.
Name ID \qquad
i. You are allowed to use 2 pages of formulas and tables, but not any concept descriptions or derivations.
ii. Please fill the score blanks below:
\qquad
Qz5 ___ Qz6___ Qz7___ Qz8 ___
Delete two lowest scores and provide the average of 6 quizzes in 2 decimal points

Average= \qquad
Midterm Exam Score (modified)= \qquad
lii. The final course grade will be based on the following weights

> Quiz Average 20\%

Midterm Exam 30\%
Final Exam 50\%
Final Exam provides 6 Problems
[1] 20 points \qquad
[2] 15 points \qquad
[3] 20 points \qquad
[4] 20 points \qquad
[5] 20 points \qquad
[6] 5 points \qquad
Total 100 points \qquad
[1] (20points) Given a function $x(t)=2(t+1) u(t+1)-2 t u(t)-2 u(t-2)$

Plot $\operatorname{Xeven}(t), \operatorname{xoda}(t)$ and $x 1(t)$ on the graph below.

Express $\mathbf{x 1}(\mathrm{t})$ mathematically

[2] (15 points) A linear time-invariant (LTI) system is described represented below.

For $\mathrm{h}(\mathrm{t})=e^{-3 t} u(t)$ and $\mathrm{x}(\mathrm{t})=$ rect $(\mathrm{t} \mid 2)$, find $\mathrm{y}(\mathrm{t})$ by using $\mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t}){ }^{*} \mathrm{~h}(\mathrm{t})=\mathrm{h}(\mathrm{t}){ }^{*} \mathrm{x}(\mathrm{t})$.
[3] (30 points) A windowed function is plotted below.

(a) (10 points) Write down a mathematical description of $\mathbf{x}(\mathbf{t})$ by using the cosine and rectangular functions.
$x(t)=(\quad) x(\quad)$
Let $\mathrm{x} 1(\mathrm{t})=\mathrm{x}(\mathrm{t}) \mathrm{x} \sum_{k=-\infty}^{\infty} \delta(t-k 3 \pi)$
(b) (20 points) Find Fourier transform of $\mathbf{x} 1(t)$. Step 1 (10pts) First find $X(\omega)$

Step 2 (10pts) Find X1 (ω)
[4] (20 points) Let us consider the following OP amp circuit.

Let C1 $=2 \mathrm{C} 2=1 \mu \mathrm{~F}$, all resistance values are $1 \mathrm{M} \Omega$
(a) (15points) Find $\mathrm{H}(\mathbf{s})=\mathrm{Vo}(\mathbf{s}) / \mathrm{Vi}(\mathbf{s})$
(b) (5 points) Find $\mathrm{h}(\mathrm{t})$ by taking inverse Laplace transform of $\mathrm{H}(\mathrm{s})$.
[5].(20 points) The following figure show a Bode plot of a band-pass filter.

At $\omega=\omega 1$, the gain in dB is 10 dB .
(a). (10 points) Find the corresponding $\mathrm{H}(\mathrm{j} \omega$) with identification of all zero and pole (angular) frequencies. Hint: $\mathrm{H}(\mathrm{j} \omega)=\mathrm{K}(1+\mathrm{j} \omega / \omega z) /[(1+\mathrm{j} \omega / \omega \mathrm{p} 1)(1+\mathrm{j} \omega / \omega \mathrm{p} 2)]$ and $\omega 1$ can be found from $\mathrm{H}(\mathrm{j} \omega)$
(b).(5points) Find $\mathbf{H}(\mathbf{s})$ by replacing j ω by s and simplifying the terms such that $H(s)=M(N(S) / D(s)), N(s)$ and $D(s)$ are polynomial functions of s.
(c) (5 points) Find output $\mathrm{y}(\mathrm{t})$ for $\mathrm{x}(\mathrm{t})=10 \cos (100 \sqrt{10} t+\Theta 1)+5 \cos (10000 \mathrm{t}+\Theta 2)$. Hint: $\mathrm{y}(\mathrm{t})=\mathrm{A} 1 \cos (100 \sqrt{10} t+\Theta \mathrm{y} 1)+\mathrm{A} 2 \cos (10000 \mathrm{t}+\Theta \mathrm{y} 2)$
Find A1. A2 from the gain information in the Bode plot. For simplicity neglect $\Theta y 1,2$. Also, use an approximation as $11+\mathrm{j} \mathrm{KI}=\mathrm{K}$ for $\mathrm{K}>3$.
[6] (5 points) Describe most significant concepts you have learned from EE103 in the Fall 2017 quarter.

