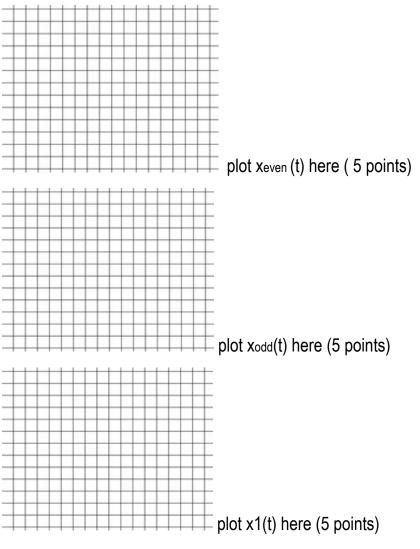
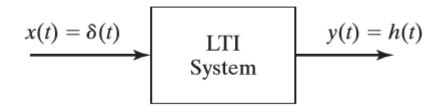
EE103 Final Examination


Dec. 12, 2017 4:00-7:00 p.m.

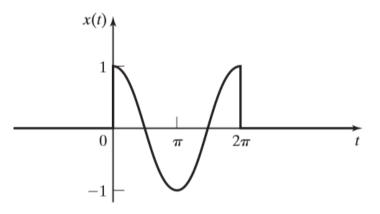
Name_			D			
i.	You are allowed to use 2 pages of formulas and tables , but not any concept descriptions or derivations.					
ii.						
					Qz4	
					Qz8	
	points		•	e the avera	ge of 6 quizzes in 2 decimal	
	Midterm Exam	Score (n	nodified)=			
lii. The final course grade will be based on the following weights						
	Quiz Average	20%				
	Midterm Exam	30%				
	Final Exam	50%				
Final Exam provides 6 Problems						
[1] 20 points						
[2] 15 points						
[3] 20 points						
	[4] 20 points					
	[5] 20 points					
	[6] 5 points					
Total	100 points					

[1] (20points) Given a function x(t) = 2(t + 1) u(t+1) - 2t u(t) - 2 u(t-2)

a new function x1(t) is defined as $x1(t) = 2 x_{even}(t) + x_{odd}(t)$.


Plot xeven (t), xodd(t) and x1(t) on the graph below.

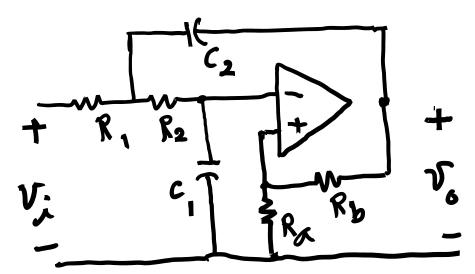
Express x1(t) mathematically


_(5points)

[2] (15 points) A linear time-invariant (LTI) system is described represented below.

For h(t) = $e^{-3t} u(t)$ and x(t) = rect (t|2), find y(t) by using y(t)= x(t) * h(t) = h(t) * x(t).

[3] (30 points) A windowed function is plotted below.

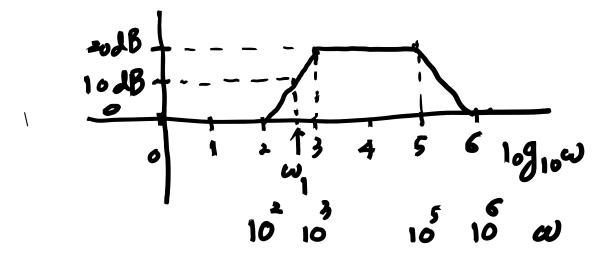

(a) (10 points) Write down a mathematical description of x(t) by using the cosine and rectangular functions.

$$x(t) = () x ()$$

Let x1(t) = x (t) x $\sum_{k=-\infty}^{\infty} \delta(t - k3\pi)$

(b) (20 points) Find Fourier transform of x1(t). Step 1 (10pts) First find $X(\omega)$

Step 2 (10pts) Find $X1(\omega)$


[4] (20 points) Let us consider the following OP amp circuit.

Let C1 = 2 C2 = 1 μ F, all resistance values are 1M Ω

(a) (15points) Find H(s) = Vo(s)/Vi(s)

(b) (5 points) **Find h(t)** by taking inverse Laplace transform of H(s).

[5].(20 points) The following figure show a Bode plot of a band-pass filter.

At $\omega = \omega 1$, the gain in dB is 10 dB.

(a). (10 points) Find the corresponding H(j ω) with identification of all zero and pole (angular) frequencies. Hint: H(j ω)= K (1 + j $\omega/\omega z$) / [(1 + j $\omega/\omega p$ 1) (1 + j $\omega/\omega p$ 2)] and ω 1 can be found from H(j ω)

(b).(5points) Find H(s) by replacing j ω by s and simplifying the terms such that H(s)= M (N(S)/D(s)), N(s) and D(s) are polynomial functions of s.

(c) (5 points) **Find output y(t)** for x(t) = $10\cos(100\sqrt{10} t + \Theta 1) + 5\cos(10000t + \Theta 2)$. Hint: y(t) = A1 cos ($100\sqrt{10} t + \Theta y1$) + A2 cos ($10000t + \Theta y2$) Find A1. A2 from the gain information in the Bode plot. For simplicity neglect $\Theta y1$,2. Also, use an approximation as 11 + j K I = K for K > 3. [6] (5 points) Describe **most significant concepts** you have learned from EE103 in the Fall 2017 quarter.